

    
      
          
            
  
Intellifire4Py

[image: PyPI] [https://pypi.org/project/intellifire4py/]
[image: Status] [https://pypi.org/project/intellifire4py/]
[image: Python Version] [https://pypi.org/project/intellifire4py]
[image: License]

[image: Read the documentation at https://intellifire4py.readthedocs.io/]
[image: Tests] [https://github.com/jeeftor/intellifire4py/actions?workflow=Tests]
[image: Codecov] [https://app.codecov.io/gh/jeeftor/intellifire4py]

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]


Features


	TODO






Requirements


	TODO






Installation

You can install Intellifire4Py via pip [https://pip.pypa.io/] from PyPI [https://pypi.org/]:

$ pip install intellifire4py







Usage

Please see the API Reference for details.



Contributing

Contributions are very welcome.
To learn more, see the Contributor Guide.



License

Distributed under the terms of the MIT license,
Intellifire4Py is free and open source software.



Issues

If you encounter any problems,
please file an issue [https://github.com/jeeftor/intellifire4py/issues] along with a detailed description.



Credits

This project was generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.








            

          

      

      

    

  

    
      
          
            
  
Usage

There are two main APIs in version 3.0 of IntelliFire4Py


Control Config Values

In order to actually issue commands to the fireplace you will need to obtain a few items from the cloud portal. These can be done automatically


	user_id - This is a the user_id associated with your specific account


	api_key - This is a specific key associated with a specific fireplace


	fireplace_ip - The IP address of the fireplace on the local network






UDP Discovery

This code is also available in example_discovery.py:

import asyncio
from intellifire4py.udp import UDPFireplaceFinder

async def main() -> None:
    """Discovery fire places"""

    # Most likely fail discovery due to a short time out
    timeout = 1
    print(f"----- Find Fire Places - (waiting {timeout} seconds)-----")
    af = UDPFireplaceFinder()
    print(await af.search_fireplace(timeout=timeout))

    # Set a reasonalbe timeout
    print(f"----- Find Fire Places - (waiting {timeout} seconds)-----")
    af = UDPFireplaceFinder()
    print(await af.search_fireplace(timeout=timeout))

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())








Local Polling

With only access to the ip address of the unit you can perform local polling of data using IntelliFireAPILocal.

import asyncio
import logging
import os

from intellifire4py import IntelliFireAPILocal

logging.basicConfig(level=logging.DEBUG)

async def main() -> None:
    """Main function."""
    print(
        """
    Accessing IFT_IP environment variable to connect to fireplace
    """
    )
    ip = os.environ["IFT_IP"]

    api = IntelliFireAPILocal(fireplace_ip=ip)
    await api.poll(suppress_warnings=False)
    print(api.data)


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())







Cloud Credentials

In order to actually control the unit you will need to access the cloud in order to pull down some credentials. This is demonstrated in example_cloud_info.py however the key usage is as follows:

cloud_api = IntelliFireAPICloud(use_http=True, verify_ssl=False)
await cloud_api.login(username=username, password=password)

# Once logged in you can pull out the api key for the default (first detected) fireplace
api_key = cloud_api.get_fireplace_api_key(cloud_api.default_fireplace)

# Extract user_id
user_id = cloud_api.get_user_id()





When obtained these values can then be used for local control of the fireplace



Local Control

In order to control the fireplace you must instantiate IntelliFireAPILocal as follows:

from intellifire4py import IntelliFireAPILocal

api = IntelliFireAPILocal(
    fireplace_ip=fireplace_ip,
    user_id=user_id,
    api_key=api_key
)

# And then you can issue commands such as:
await api.flame_on()









            

          

      

      

    

  

    
      
          
            
  
Reference


IntelliFire4PY

IntelliFire API for Python.



IntelliFireAPILocal


	
class intellifire4py.IntelliFireAPILocal(fireplace_ip, user_id='', api_key='')

	Top level API for IntelliFire Data - local network only.

Class Initialization.


	Parameters:

	
	fireplace_ip (str) – _description_


	user_id (str, optional) – The user_id as retrieved from IntelliFireAPICloud. If left blank - will not be able to control the unit. Defaults to “”.


	api_key (str, optional) – Each fireplace has a unique api_key. If left blank - will not be able to control the unit. Defaults to “”.









See also


	IntelliFireAPICloud.login()


	IntelliFireAPICloud.get_user_id()


	IntelliFireAPICloud.get_fireplace_api_key()







	
async beep()

	Issue a beep command (Cloud Only).


	Return type:

	None










	
property data: IntelliFirePollData

	Return data to the user.






	
async fan_off()

	Turn fan off.


	Return type:

	None










	
async flame_off()

	Turn off the flame.


	Return type:

	None










	
async flame_on()

	Turn on the flame.


	Return type:

	None










	
property is_polling_in_background: bool

	Return whether api is polling.






	
log_status()

	Log a status message.


	Return type:

	None










	
overwrite_data(new_data)

	Overwrite existing poll data.


	Parameters:

	new_data (IntelliFirePollData) – 



	Return type:

	None










	
async pilot_off()

	Turn off the pilot light.


	Return type:

	None










	
async pilot_on()

	Turn on the pilot light.


	Return type:

	None










	
async poll(suppress_warnings=False)

	Read the /poll endpoint.


	Parameters:

	suppress_warnings (bool, optional) – If True will inhibit the printing of log messages Useful for a specific case in Home Assistant. Defaults to False.



	Raises:

	ConnectionError – _description_



	Return type:

	None










	
async send_command(*, command, value)

	Send a command (local only for now).


	Parameters:

	
	command (IntelliFireCommand) – 


	value (int) – 






	Return type:

	None










	
async set_fan_speed(speed)

	Set fan speed.


	Parameters:

	speed (int) – 



	Return type:

	None










	
async set_flame_height(height)

	Set flame height.


	Parameters:

	height (int) – Valid height 0-4 (in the future this will be 1-5)



	Return type:

	None










	
async set_lights(level)

	Modify light levels.


	Parameters:

	level (int) – 



	Return type:

	None










	
async set_sleep_timer(minutes)

	Set the sleep timer in minutes.


	Parameters:

	minutes (int) – Valid range 0-180



	Return type:

	None










	
async set_thermostat_c(temp_c)

	Set thermostat value in centigrade.


	Parameters:

	temp_c (int) – 



	Return type:

	None










	
async set_thermostat_f(temp_f)

	Set thermostat value in fahrenheit.

Example

# Set to 70 and store the value internally
await ift_control.set_thermostat_f(temp_f=70)
# Turn off thermostat
await ift_control.turn_off_thermostat()
# Turn on thermostat - will remember the last temp (70)
await ift_control.turn_on_thermostat()






	Parameters:

	temp_f (int) – 



	Return type:

	None










	
async soft_reset()

	Issue a soft reset command (Cloud Only).


	Return type:

	None










	
async start_background_polling(minimum_wait_in_seconds=15)

	Start an ensure-future background polling loop.


	Parameters:

	minimum_wait_in_seconds (int) – 



	Return type:

	None










	
async stop_background_polling()

	Stop background polling - return whether it had been polling.


	Return type:

	bool










	
async stop_sleep_timer()

	Stop the sleep timer.


	Return type:

	None










	
async turn_off_thermostat()

	Turn off thermostat mode.


	Return type:

	None










	
async turn_on_thermostat()

	Turn on thermostat mode.


	Return type:

	None















IntelliFireAPICloud


	
class intellifire4py.IntelliFireAPICloud(*, use_http=False, verify_ssl=True)

	Api for cloud access.

Initialize the class.

In most cases you should not specify either the use_http or verify_ssl parameters - however in some special cases such as protected networks you may need these options.


	Parameters:

	
	use_http (bool, optional) – whether to use HTTP or HTTPS mode. Defaults to False.


	verify_ssl (bool, optional) – Enable/Disable SSL Verification. Defaults to True.









	
async beep()

	Issue a beep command (Cloud Only).


	Return type:

	None










	
property data: IntelliFirePollData

	Return data to the user.






	
async fan_off()

	Turn fan off.


	Return type:

	None










	
async flame_off()

	Turn off the flame.


	Return type:

	None










	
async flame_on()

	Turn on the flame.


	Return type:

	None










	
get_fireplace_api_key(fireplace=None)

	Get API key for specific fireplace.


	Parameters:

	fireplace (IntelliFireFireplace | None) – 



	Return type:

	str










	
async get_fireplaces(client, *, location_id)

	Get fireplaces at a location with associated API keys!.


	Parameters:

	
	client (AsyncClient) – 


	location_id (str) – 






	Return type:

	list[intellifire4py.model.IntelliFireFireplace]










	
async get_locations(client)

	Enumerate configured locations that a user has access to.

‘location_id’ can be used to discovery fireplaces
and associated serial numbers + api keys at a give location.


	Parameters:

	client (AsyncClient) – 



	Return type:

	list[dict[str, str]]










	
get_user_id()

	Get user ID from cloud.


	Return type:

	str










	
property is_polling_in_background: bool

	Return whether api is polling.






	
async login(*, username, password)

	Login to Cloud API.


	Parameters:

	
	username (str) – IFTAPI.net Username (usually email)


	password (str) – IFTAPI.net Password






	Raises:

	LoginError – _description_



	Returns:

	None



	Return type:

	None










	
async long_poll(fireplace=None)

	Perform a LongPoll to wait for a Status update.

Only returns a status update when the fireplace’s status actually changes (excluding normal periodic
decreases in the “time remaining” field). If the fireplace status does not change during the time period,
the server returns status code 408 after the time limit is exceeded. The app can then immediately issue
another request on this function. If the status changes, then the server returns a 200 status code,
the status content (in the same format as for apppoll), and an Etag header. The Etag should be sent in an
If-None- Match header for the next request, so the server knows where in the queue to look for the next
command to return. The correct order to do this is first issue an apppoll request (or equivalently,
an enumuserfireplaces request), and then issue applongpoll requests for as long as the status is needed.
Although this may seem to create a race condition, the server puts fireplace status updates in a queue where
they last for 30 seconds. Therefore, as long as the Internet connection isn’t unusably slow,
no status updates will be lost. If the connection goes down, then the process needs to be restarted. The time
limit is nominally 60 seconds. After 57 seconds, the server will send a 408 response, and after 61 seconds,
the mobile app should assume that the connection has been dropped.


	Parameters:

	fireplace (IntelliFireFireplace | None, optional) – _description_. Defaults to None.



	Raises:

	ApiCallError – Issue with the API call, either bad credentials or a bad serial number



	Returns:

	True if status changed, False if it did not



	Return type:

	bool










	
overwrite_data(new_data)

	Overwrite existing poll data.


	Parameters:

	new_data (IntelliFirePollData) – 



	Return type:

	None










	
async pilot_off()

	Turn off the pilot light.


	Return type:

	None










	
async pilot_on()

	Turn on the pilot light.


	Return type:

	None










	
async poll(fireplace=None)

	Return a fireplace’s status in JSON.


	Parameters:

	fireplace (IntelliFireFireplace | None, optional) – _description_. Defaults to None.



	Raises:

	
	ApiCallError – _description_


	ApiCallError – _description_


	Exception – _description_






	Returns:

	_description_



	Return type:

	_type_





Example:

{
"name":"undefined",
"temperature":"22",
"battery":"0",
"pilot":"0",
"light":"3",
"height":"4",
"fanspeed":"0",
"hot":"0",
"power":"0",
"schedule_enable":"0",
"thermostat":"0",
"setpoint":"0",
"timer":"0",
"timeremaining":"0",
"prepurge":"0",
"feature_light":"1",
"feature_thermostat":"1",
"power_vent":"0",
"feature_fan":"1",
"errors":[3269],
"firmware_version":"0x01000000"
"brand":"H&G"
}










	
async send_command(*, command, value)

	Send a command (cloud based).


	Parameters:

	
	command (IntelliFireCommand) – 


	value (int) – 






	Return type:

	None










	
async set_fan_speed(speed)

	Set fan speed.


	Parameters:

	speed (int) – 



	Return type:

	None










	
async set_flame_height(height)

	Set flame height.


	Parameters:

	height (int) – Valid height 0-4 (in the future this will be 1-5)



	Return type:

	None










	
async set_lights(level)

	Modify light levels.


	Parameters:

	level (int) – 



	Return type:

	None










	
async set_sleep_timer(minutes)

	Set the sleep timer in minutes.


	Parameters:

	minutes (int) – Valid range 0-180



	Return type:

	None










	
async set_thermostat_c(temp_c)

	Set thermostat value in centigrade.


	Parameters:

	temp_c (int) – 



	Return type:

	None










	
async set_thermostat_f(temp_f)

	Set thermostat value in fahrenheit.

Example

# Set to 70 and store the value internally
await ift_control.set_thermostat_f(temp_f=70)
# Turn off thermostat
await ift_control.turn_off_thermostat()
# Turn on thermostat - will remember the last temp (70)
await ift_control.turn_on_thermostat()






	Parameters:

	temp_f (int) – 



	Return type:

	None










	
async soft_reset()

	Issue a soft reset command (Cloud Only).


	Return type:

	None










	
async start_background_polling(minimum_wait_in_seconds=10)

	Start an ensure-future background polling loop.


	Parameters:

	minimum_wait_in_seconds (int) – 



	Return type:

	None










	
async stop_background_polling()

	Stop background polling - return whether it had been polling.


	Return type:

	bool










	
async stop_sleep_timer()

	Stop the sleep timer.


	Return type:

	None










	
async turn_off_thermostat()

	Turn off thermostat mode.


	Return type:

	None










	
async turn_on_thermostat()

	Turn on thermostat mode.


	Return type:

	None















IntelliFireErrorCode


	
class intellifire4py.IntelliFireErrorCode(value=<no_arg>, names=None, module=None, qualname=None, type=None, start=1, boundary=None)

	The following is a description of various error codes. These were obtained by decompiling the Android APK.


	
PILOT_FLAME

	Pilot Flame Error: Your appliance has been safely disabled. Please contact your dealer and report this issue.






	
FAN_DELAY

	Fan Information: Fan will turn on within 3 minutes. Your appliance has a built-in delay that prevents the fan from operating within the first 3 minutes of turning on the appliance. This allows the air to be heated prior to circulation.






	
FLAME

	Pilot Flame Error. Your appliance has been safely disabled. Please contact your dealer and report this issue.






	
MAINTENANCE

	Maintenance: Your appliance is due for a routine maintenance check. Please contact your dealer to ensure your appliance is operating at peak performance.






	
DISABLED

	Appliance Safely Disabled: Your appliance has been disabled. Please contact your dealer and report this issue.






	
FAN

	Fan Error. Your appliance has detected that an accessory is not functional. Please contact your dealer and report this issue.






	
LIGHTS

	Lights Error. Your appliance has detected that an accessory is not functional. Please contact your dealer and report this issue.






	
ACCESSORY

	Your appliance has detected that an AUX port or accessory is not functional. Please contact your dealer and report this issue.






	
SOFT_LOCK_OUT

	Sorry your appliance did not start. Try again by pressing Flame ON.






	
OFFLINE

	Your appliance is currently offline.






	
ECM_OFFLINE

	ECM is offline.













            

          

      

      

    

  

    
      
          
            
  
Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:


	Source Code [https://github.com/jeeftor/intellifire4py]


	Documentation [https://intellifire4py.readthedocs.io/]


	Issue Tracker [https://github.com/jeeftor/intellifire4py/issues]


	Code of Conduct





How to report a bug

Report bugs on the Issue Tracker [https://github.com/jeeftor/intellifire4py/issues].

When filing an issue, make sure to answer these questions:


	Which operating system and Python version are you using?


	Which version of this project are you using?


	What did you do?


	What did you expect to see?


	What did you see instead?




The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.



How to request a feature

Request features on the Issue Tracker [https://github.com/jeeftor/intellifire4py/issues].



How to set up your development environment

You need Python 3.7+ and the following tools:


	Poetry [https://python-poetry.org/]


	Nox [https://nox.thea.codes/]


	nox-poetry [https://nox-poetry.readthedocs.io/]




Install the package with development requirements:

$ poetry install





You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run intellifire4py







How to test the project

Run the full test suite:

$ nox





List the available Nox sessions:

$ nox --list-sessions





You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests





Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.



How to submit changes

Open a pull request [https://github.com/jeeftor/intellifire4py/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:


	The Nox test suite must pass without errors and warnings.


	Include unit tests. This project maintains 100% code coverage.


	If your changes add functionality, update the documentation accordingly.




Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install





It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.





            

          

      

      

    

  

    
      
          
            
  
Contributor Covenant Code of Conduct


Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.



Our Standards

Examples of behavior that contributes to a positive environment for our
community include:


	Demonstrating empathy and kindness toward other people


	Being respectful of differing opinions, viewpoints, and experiences


	Giving and gracefully accepting constructive feedback


	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience


	Focusing on what is best not just for us as individuals, but for the overall
community




Examples of unacceptable behavior include:


	The use of sexualized language or imagery, and sexual attention or advances of
any kind


	Trolling, insulting or derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or email address,
without their explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting






Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.



Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.



Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
jeffstein@gmail.com.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.



Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:


1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.



2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.



3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.



4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.




Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.





            

          

      

      

    

  

    
      
          
            
  
License

MIT License

Copyright © 2021 Jeff Stein

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.








            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   i
   


   
     		 	

     		
       i	

     
       	
       	
       intellifire4py	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | S
 | T
 


A


  	
      	ACCESSORY (intellifire4py.IntelliFireErrorCode attribute)


  





B


  	
      	beep() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  





D


  	
      	data (intellifire4py.IntelliFireAPICloud property)

      
        	(intellifire4py.IntelliFireAPILocal property)


      


  

  	
      	DISABLED (intellifire4py.IntelliFireErrorCode attribute)


  





E


  	
      	ECM_OFFLINE (intellifire4py.IntelliFireErrorCode attribute)


  





F


  	
      	FAN (intellifire4py.IntelliFireErrorCode attribute)


      	FAN_DELAY (intellifire4py.IntelliFireErrorCode attribute)


      	fan_off() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  

  	
      	FLAME (intellifire4py.IntelliFireErrorCode attribute)


      	flame_off() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	flame_on() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  





G


  	
      	get_fireplace_api_key() (intellifire4py.IntelliFireAPICloud method)


      	get_fireplaces() (intellifire4py.IntelliFireAPICloud method)


  

  	
      	get_locations() (intellifire4py.IntelliFireAPICloud method)


      	get_user_id() (intellifire4py.IntelliFireAPICloud method)


  





I


  	
      	
    intellifire4py

      
        	module


      


      	IntelliFireAPICloud (class in intellifire4py)


  

  	
      	IntelliFireAPILocal (class in intellifire4py)


      	IntelliFireErrorCode (class in intellifire4py)


      	is_polling_in_background (intellifire4py.IntelliFireAPICloud property)

      
        	(intellifire4py.IntelliFireAPILocal property)


      


  





L


  	
      	LIGHTS (intellifire4py.IntelliFireErrorCode attribute)


      	log_status() (intellifire4py.IntelliFireAPILocal method)


  

  	
      	login() (intellifire4py.IntelliFireAPICloud method)


      	long_poll() (intellifire4py.IntelliFireAPICloud method)


  





M


  	
      	MAINTENANCE (intellifire4py.IntelliFireErrorCode attribute)


  

  	
      	
    module

      
        	intellifire4py


      


  





O


  	
      	OFFLINE (intellifire4py.IntelliFireErrorCode attribute)


  

  	
      	overwrite_data() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  





P


  	
      	PILOT_FLAME (intellifire4py.IntelliFireErrorCode attribute)


      	pilot_off() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  

  	
      	pilot_on() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	poll() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  





S


  	
      	send_command() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	set_fan_speed() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	set_flame_height() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	set_lights() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	set_sleep_timer() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	set_thermostat_c() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  

  	
      	set_thermostat_f() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	SOFT_LOCK_OUT (intellifire4py.IntelliFireErrorCode attribute)


      	soft_reset() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	start_background_polling() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	stop_background_polling() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


      	stop_sleep_timer() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  





T


  	
      	turn_off_thermostat() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  

  	
      	turn_on_thermostat() (intellifire4py.IntelliFireAPICloud method)

      
        	(intellifire4py.IntelliFireAPILocal method)


      


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Intellifire4Py
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





