
Intellifire4Py

Jeff Stein

Feb 24, 2023

CONTENTS

1 Features 3

2 Requirements 5

3 Installation 7

4 Usage 9

5 Contributing 11

6 License 13

7 Issues 15

8 Credits 17

Python Module Index 35

Index 37

i

ii

Intellifire4Py

CONTENTS 1

https://pypi.org/project/intellifire4py/
https://pypi.org/project/intellifire4py/
https://pypi.org/project/intellifire4py
https://intellifire4py.readthedocs.io/
https://github.com/jeeftor/intellifire4py/actions?workflow=Tests
https://app.codecov.io/gh/jeeftor/intellifire4py
https://github.com/pre-commit/pre-commit

Intellifire4Py

2 CONTENTS

CHAPTER

ONE

FEATURES

• TODO

3

Intellifire4Py

4 Chapter 1. Features

CHAPTER

TWO

REQUIREMENTS

• TODO

5

Intellifire4Py

6 Chapter 2. Requirements

CHAPTER

THREE

INSTALLATION

You can install Intellifire4Py via pip from PyPI:

$ pip install intellifire4py

7

https://pip.pypa.io/
https://pypi.org/

Intellifire4Py

8 Chapter 3. Installation

CHAPTER

FOUR

USAGE

Please see the API Reference for details.

9

Intellifire4Py

10 Chapter 4. Usage

CHAPTER

FIVE

CONTRIBUTING

Contributions are very welcome. To learn more, see the Contributor Guide.

11

Intellifire4Py

12 Chapter 5. Contributing

CHAPTER

SIX

LICENSE

Distributed under the terms of the MIT license, Intellifire4Py is free and open source software.

13

Intellifire4Py

14 Chapter 6. License

CHAPTER

SEVEN

ISSUES

If you encounter any problems, please file an issue along with a detailed description.

15

https://github.com/jeeftor/intellifire4py/issues

Intellifire4Py

16 Chapter 7. Issues

CHAPTER

EIGHT

CREDITS

This project was generated from @cjolowicz’s Hypermodern Python Cookiecutter template.

8.1 Usage

There are two main APIs in version 3.0 of IntelliFire4Py

8.1.1 Control Config Values

In order to actually issue commands to the fireplace you will need to obtain a few items from the cloud portal. These
can be done automatically

• user_id - This is a the user_id associated with your specific account

• api_key - This is a specific key associated with a specific fireplace

• fireplace_ip - The IP address of the fireplace on the local network

8.1.2 UDP Discovery

This code is also available in example_discovery.py:

import asyncio
from intellifire4py.udp import UDPFireplaceFinder

async def main() -> None:
"""Discovery fire places"""

Most likely fail discovery due to a short time out
timeout = 1
print(f"----- Find Fire Places - (waiting {timeout} seconds)-----")
af = UDPFireplaceFinder()
print(await af.search_fireplace(timeout=timeout))

Set a reasonalbe timeout
print(f"----- Find Fire Places - (waiting {timeout} seconds)-----")
af = UDPFireplaceFinder()
print(await af.search_fireplace(timeout=timeout))

(continues on next page)

17

https://github.com/cjolowicz
https://github.com/cjolowicz/cookiecutter-hypermodern-python

Intellifire4Py

(continued from previous page)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

8.1.3 Local Polling

With only access to the ip address of the unit you can perform local polling of data using IntelliFireAPILocal.

import asyncio
import logging
import os

from intellifire4py import IntelliFireAPILocal

logging.basicConfig(level=logging.DEBUG)

async def main() -> None:
"""Main function."""
print(

"""
Accessing IFT_IP environment variable to connect to fireplace
"""
)
ip = os.environ["IFT_IP"]

api = IntelliFireAPILocal(fireplace_ip=ip)
await api.poll(suppress_warnings=False)
print(api.data)

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

8.1.4 Cloud Credentials

In order to actually control the unit you will need to access the cloud in order to pull down some credentials. This is
demonstrated in example_cloud_info.py however the key usage is as follows:

cloud_api = IntelliFireAPICloud(use_http=True, verify_ssl=False)
await cloud_api.login(username=username, password=password)

Once logged in you can pull out the api key for the default (first detected) fireplace
api_key = cloud_api.get_fireplace_api_key(cloud_api.default_fireplace)

Extract user_id
user_id = cloud_api.get_user_id()

When obtained these values can then be used for local control of the fireplace

18 Chapter 8. Credits

Intellifire4Py

8.1.5 Local Control

In order to control the fireplace you must instantiate IntelliFireAPILocal as follows:

from intellifire4py import IntelliFireAPILocal

api = IntelliFireAPILocal(
fireplace_ip=fireplace_ip,
user_id=user_id,
api_key=api_key

)

And then you can issue commands such as:
await api.flame_on()

8.2 Reference

8.2.1 IntelliFire4PY

IntelliFire API for Python.

8.2.2 IntelliFireAPILocal

class intellifire4py.IntelliFireAPILocal(fireplace_ip, user_id='', api_key='')
Top level API for IntelliFire Data - local network only.

Class Initialization.

Parameters

• fireplace_ip (str) – _description_

• user_id (str, optional) – The user_id as retrieved from IntelliFireAPICloud . If
left blank - will not be able to control the unit. Defaults to “”.

• api_key (str, optional) – Each fireplace has a unique api_key. If left blank - will not
be able to control the unit. Defaults to “”.

See also:

• IntelliFireAPICloud.login()

• IntelliFireAPICloud.get_user_id()

• IntelliFireAPICloud.get_fireplace_api_key()

async beep()

Issue a beep command (Cloud Only).

Return type
None

property data: IntelliFirePollData

Return data to the user.

8.2. Reference 19

Intellifire4Py

async fan_off()

Turn fan off.

Return type
None

async flame_off()

Turn off the flame.

Return type
None

async flame_on()

Turn on the flame.

Return type
None

property is_polling_in_background: bool

Return whether api is polling.

log_status()

Log a status message.

Return type
None

overwrite_data(new_data)
Overwrite existing poll data.

Parameters
new_data (IntelliFirePollData) –

Return type
None

async pilot_off()

Turn off the pilot light.

Return type
None

async pilot_on()

Turn on the pilot light.

Return type
None

async poll(suppress_warnings=False)
Read the /poll endpoint.

Parameters
suppress_warnings (bool, optional) – If True will inhibit the printing of log messages
Useful for a specific case in Home Assistant. Defaults to False.

Raises
ConnectionError – _description_

Return type
None

20 Chapter 8. Credits

Intellifire4Py

async send_command(*, command, value)
Send a command (local only for now).

Parameters

• command (IntelliFireCommand) –

• value (int) –

Return type
None

async set_fan_speed(speed)
Set fan speed.

Parameters
speed (int) –

Return type
None

async set_flame_height(height)
Set flame height.

Parameters
height (int) – Valid height 0-4 (in the future this will be 1-5)

Return type
None

async set_lights(level)
Modify light levels.

Parameters
level (int) –

Return type
None

async set_sleep_timer(minutes)
Set the sleep timer in minutes.

Parameters
minutes (int) – Valid range 0-180

Return type
None

async set_thermostat_c(temp_c)
Set thermostat value in centigrade.

Parameters
temp_c (int) –

Return type
None

async set_thermostat_f(temp_f)
Set thermostat value in fahrenheit.

8.2. Reference 21

Intellifire4Py

Example

Set to 70 and store the value internally
await ift_control.set_thermostat_f(temp_f=70)
Turn off thermostat
await ift_control.turn_off_thermostat()
Turn on thermostat - will remember the last temp (70)
await ift_control.turn_on_thermostat()

Parameters
temp_f (int) –

Return type
None

async soft_reset()

Issue a soft reset command (Cloud Only).

Return type
None

async start_background_polling(minimum_wait_in_seconds=15)
Start an ensure-future background polling loop.

Parameters
minimum_wait_in_seconds (int) –

Return type
None

async stop_background_polling()

Stop background polling - return whether it had been polling.

Return type
bool

async stop_sleep_timer()

Stop the sleep timer.

Return type
None

async turn_off_thermostat()

Turn off thermostat mode.

Return type
None

async turn_on_thermostat()

Turn on thermostat mode.

Return type
None

22 Chapter 8. Credits

Intellifire4Py

8.2.3 IntelliFireAPICloud

class intellifire4py.IntelliFireAPICloud(*, use_http=False, verify_ssl=True)
Api for cloud access.

Initialize the class.

In most cases you should not specify either the use_http or verify_ssl parameters - however in some special cases
such as protected networks you may need these options.

Parameters

• use_http (bool, optional) – whether to use HTTP or HTTPS mode. Defaults to False.

• verify_ssl (bool, optional) – Enable/Disable SSL Verification. Defaults to True.

async beep()

Issue a beep command (Cloud Only).

Return type
None

property data: IntelliFirePollData

Return data to the user.

async fan_off()

Turn fan off.

Return type
None

async flame_off()

Turn off the flame.

Return type
None

async flame_on()

Turn on the flame.

Return type
None

get_fireplace_api_key(fireplace=None)
Get API key for specific fireplace.

Parameters
fireplace (IntelliFireFireplace | None) –

Return type
str

async get_fireplaces(client, *, location_id)
Get fireplaces at a location with associated API keys!.

Parameters

• client (AsyncClient) –

• location_id (str) –

Return type
list[intellifire4py.model.IntelliFireFireplace]

8.2. Reference 23

Intellifire4Py

async get_locations(client)
Enumerate configured locations that a user has access to.

‘location_id’ can be used to discovery fireplaces and associated serial numbers + api keys at a give location.

Parameters
client (AsyncClient) –

Return type
list[dict[str, str]]

get_user_id()

Get user ID from cloud.

Return type
str

property is_polling_in_background: bool

Return whether api is polling.

async login(*, username, password)
Login to Cloud API.

Parameters

• username (str) – IFTAPI.net Username (usually email)

• password (str) – IFTAPI.net Password

Raises
LoginError – _description_

Returns
None

Return type
None

async long_poll(fireplace=None)
Perform a LongPoll to wait for a Status update.

Only returns a status update when the fireplace’s status actually changes (excluding normal periodic de-
creases in the “time remaining” field). If the fireplace status does not change during the time period, the
server returns status code 408 after the time limit is exceeded. The app can then immediately issue another
request on this function. If the status changes, then the server returns a 200 status code, the status content
(in the same format as for apppoll), and an Etag header. The Etag should be sent in an If-None- Match
header for the next request, so the server knows where in the queue to look for the next command to return.
The correct order to do this is first issue an apppoll request (or equivalently, an enumuserfireplaces request),
and then issue applongpoll requests for as long as the status is needed. Although this may seem to create a
race condition, the server puts fireplace status updates in a queue where they last for 30 seconds. Therefore,
as long as the Internet connection isn’t unusably slow, no status updates will be lost. If the connection goes
down, then the process needs to be restarted. The time limit is nominally 60 seconds. After 57 seconds, the
server will send a 408 response, and after 61 seconds, the mobile app should assume that the connection
has been dropped.

Parameters
fireplace (IntelliFireFireplace | None, optional) – _description_. Defaults to
None.

Raises
ApiCallError – Issue with the API call, either bad credentials or a bad serial number

24 Chapter 8. Credits

Intellifire4Py

Returns
True if status changed, False if it did not

Return type
bool

overwrite_data(new_data)
Overwrite existing poll data.

Parameters
new_data (IntelliFirePollData) –

Return type
None

async pilot_off()

Turn off the pilot light.

Return type
None

async pilot_on()

Turn on the pilot light.

Return type
None

async poll(fireplace=None)
Return a fireplace’s status in JSON.

Parameters
fireplace (IntelliFireFireplace | None, optional) – _description_. Defaults to
None.

Raises

• ApiCallError – _description_

• ApiCallError – _description_

• Exception – _description_

Returns
description

Return type
type

Example:

{
"name":"undefined",
"temperature":"22",
"battery":"0",
"pilot":"0",
"light":"3",
"height":"4",
"fanspeed":"0",
"hot":"0",
"power":"0",
"schedule_enable":"0",

(continues on next page)

8.2. Reference 25

Intellifire4Py

(continued from previous page)

"thermostat":"0",
"setpoint":"0",
"timer":"0",
"timeremaining":"0",
"prepurge":"0",
"feature_light":"1",
"feature_thermostat":"1",
"power_vent":"0",
"feature_fan":"1",
"errors":[3269],
"firmware_version":"0x01000000"
"brand":"H&G"
}

async send_command(*, command, value)
Send a command (cloud based).

Parameters

• command (IntelliFireCommand) –

• value (int) –

Return type
None

async set_fan_speed(speed)
Set fan speed.

Parameters
speed (int) –

Return type
None

async set_flame_height(height)
Set flame height.

Parameters
height (int) – Valid height 0-4 (in the future this will be 1-5)

Return type
None

async set_lights(level)
Modify light levels.

Parameters
level (int) –

Return type
None

async set_sleep_timer(minutes)
Set the sleep timer in minutes.

Parameters
minutes (int) – Valid range 0-180

26 Chapter 8. Credits

Intellifire4Py

Return type
None

async set_thermostat_c(temp_c)
Set thermostat value in centigrade.

Parameters
temp_c (int) –

Return type
None

async set_thermostat_f(temp_f)
Set thermostat value in fahrenheit.

Example

Set to 70 and store the value internally
await ift_control.set_thermostat_f(temp_f=70)
Turn off thermostat
await ift_control.turn_off_thermostat()
Turn on thermostat - will remember the last temp (70)
await ift_control.turn_on_thermostat()

Parameters
temp_f (int) –

Return type
None

async soft_reset()

Issue a soft reset command (Cloud Only).

Return type
None

async start_background_polling(minimum_wait_in_seconds=10)
Start an ensure-future background polling loop.

Parameters
minimum_wait_in_seconds (int) –

Return type
None

async stop_background_polling()

Stop background polling - return whether it had been polling.

Return type
bool

async stop_sleep_timer()

Stop the sleep timer.

Return type
None

8.2. Reference 27

Intellifire4Py

async turn_off_thermostat()

Turn off thermostat mode.

Return type
None

async turn_on_thermostat()

Turn on thermostat mode.

Return type
None

8.2.4 IntelliFireErrorCode

class intellifire4py.IntelliFireErrorCode(value=<no_arg>, names=None, module=None,
qualname=None, type=None, start=1, boundary=None)

The following is a description of various error codes. These were obtained by decompiling the Android APK.

PILOT_FLAME

Pilot Flame Error: Your appliance has been safely disabled. Please contact your dealer and report this issue.

FAN_DELAY

Fan Information: Fan will turn on within 3 minutes. Your appliance has a built-in delay that prevents the
fan from operating within the first 3 minutes of turning on the appliance. This allows the air to be heated
prior to circulation.

FLAME

Pilot Flame Error. Your appliance has been safely disabled. Please contact your dealer and report this issue.

MAINTENANCE

Maintenance: Your appliance is due for a routine maintenance check. Please contact your dealer to ensure
your appliance is operating at peak performance.

DISABLED

Appliance Safely Disabled: Your appliance has been disabled. Please contact your dealer and report this
issue.

FAN

Fan Error. Your appliance has detected that an accessory is not functional. Please contact your dealer and
report this issue.

LIGHTS

Lights Error. Your appliance has detected that an accessory is not functional. Please contact your dealer
and report this issue.

ACCESSORY

Your appliance has detected that an AUX port or accessory is not functional. Please contact your dealer
and report this issue.

SOFT_LOCK_OUT

Sorry your appliance did not start. Try again by pressing Flame ON.

OFFLINE

Your appliance is currently offline.

ECM_OFFLINE

ECM is offline.

28 Chapter 8. Credits

Intellifire4Py

8.3 Contributor Guide

Thank you for your interest in improving this project. This project is open-source under the MIT license and welcomes
contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

• Source Code

• Documentation

• Issue Tracker

• Code of Conduct

8.3.1 How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

• Which operating system and Python version are you using?

• Which version of this project are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

8.3.2 How to request a feature

Request features on the Issue Tracker.

8.3.3 How to set up your development environment

You need Python 3.7+ and the following tools:

• Poetry

• Nox

• nox-poetry

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session, or the command-line interface:

$ poetry run python
$ poetry run intellifire4py

8.3. Contributor Guide 29

https://opensource.org/licenses/MIT
https://github.com/jeeftor/intellifire4py
https://intellifire4py.readthedocs.io/
https://github.com/jeeftor/intellifire4py/issues
https://github.com/jeeftor/intellifire4py/issues
https://github.com/jeeftor/intellifire4py/issues
https://python-poetry.org/
https://nox.thea.codes/
https://nox-poetry.readthedocs.io/

Intellifire4Py

8.3.4 How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

8.3.5 How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests. This project maintains 100% code coverage.

• If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by
running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the
owners and validate your approach.

8.4 Contributor Covenant Code of Conduct

8.4.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste,
color, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

30 Chapter 8. Credits

https://pytest.readthedocs.io/
https://github.com/jeeftor/intellifire4py/pulls

Intellifire4Py

8.4.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

8.4.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

8.4.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

8.4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at jeffstein@gmail.com. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

8.4. Contributor Covenant Code of Conduct 31

mailto:jeffstein@gmail.com

Intellifire4Py

8.4.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

8.4.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.
contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

32 Chapter 8. Credits

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

Intellifire4Py

8.5 License

MIT License

Copyright © 2021 Jeff Stein

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

8.5. License 33

Intellifire4Py

34 Chapter 8. Credits

PYTHON MODULE INDEX

i
intellifire4py, 19

35

Intellifire4Py

36 Python Module Index

INDEX

A
ACCESSORY (intellifire4py.IntelliFireErrorCode at-

tribute), 28

B
beep() (intellifire4py.IntelliFireAPICloud method), 23
beep() (intellifire4py.IntelliFireAPILocal method), 19

D
data (intellifire4py.IntelliFireAPICloud property), 23
data (intellifire4py.IntelliFireAPILocal property), 19
DISABLED (intellifire4py.IntelliFireErrorCode attribute),

28

E
ECM_OFFLINE (intellifire4py.IntelliFireErrorCode at-

tribute), 28

F
FAN (intellifire4py.IntelliFireErrorCode attribute), 28
FAN_DELAY (intellifire4py.IntelliFireErrorCode at-

tribute), 28
fan_off() (intellifire4py.IntelliFireAPICloud method),

23
fan_off() (intellifire4py.IntelliFireAPILocal method),

19
FLAME (intellifire4py.IntelliFireErrorCode attribute), 28
flame_off() (intellifire4py.IntelliFireAPICloud

method), 23
flame_off() (intellifire4py.IntelliFireAPILocal

method), 20
flame_on() (intellifire4py.IntelliFireAPICloud method),

23
flame_on() (intellifire4py.IntelliFireAPILocal method),

20

G
get_fireplace_api_key() (intelli-

fire4py.IntelliFireAPICloud method), 23
get_fireplaces() (intellifire4py.IntelliFireAPICloud

method), 23

get_locations() (intellifire4py.IntelliFireAPICloud
method), 23

get_user_id() (intellifire4py.IntelliFireAPICloud
method), 24

I
intellifire4py

module, 19
IntelliFireAPICloud (class in intellifire4py), 23
IntelliFireAPILocal (class in intellifire4py), 19
IntelliFireErrorCode (class in intellifire4py), 28
is_polling_in_background (intelli-

fire4py.IntelliFireAPICloud property), 24
is_polling_in_background (intelli-

fire4py.IntelliFireAPILocal property), 20

L
LIGHTS (intellifire4py.IntelliFireErrorCode attribute), 28
log_status() (intellifire4py.IntelliFireAPILocal

method), 20
login() (intellifire4py.IntelliFireAPICloud method), 24
long_poll() (intellifire4py.IntelliFireAPICloud

method), 24

M
MAINTENANCE (intellifire4py.IntelliFireErrorCode at-

tribute), 28
module

intellifire4py, 19

O
OFFLINE (intellifire4py.IntelliFireErrorCode attribute),

28
overwrite_data() (intellifire4py.IntelliFireAPICloud

method), 25
overwrite_data() (intellifire4py.IntelliFireAPILocal

method), 20

P
PILOT_FLAME (intellifire4py.IntelliFireErrorCode at-

tribute), 28

37

Intellifire4Py

pilot_off() (intellifire4py.IntelliFireAPICloud
method), 25

pilot_off() (intellifire4py.IntelliFireAPILocal
method), 20

pilot_on() (intellifire4py.IntelliFireAPICloud method),
25

pilot_on() (intellifire4py.IntelliFireAPILocal method),
20

poll() (intellifire4py.IntelliFireAPICloud method), 25
poll() (intellifire4py.IntelliFireAPILocal method), 20

S
send_command() (intellifire4py.IntelliFireAPICloud

method), 26
send_command() (intellifire4py.IntelliFireAPILocal

method), 20
set_fan_speed() (intellifire4py.IntelliFireAPICloud

method), 26
set_fan_speed() (intellifire4py.IntelliFireAPILocal

method), 21
set_flame_height() (intelli-

fire4py.IntelliFireAPICloud method), 26
set_flame_height() (intelli-

fire4py.IntelliFireAPILocal method), 21
set_lights() (intellifire4py.IntelliFireAPICloud

method), 26
set_lights() (intellifire4py.IntelliFireAPILocal

method), 21
set_sleep_timer() (intellifire4py.IntelliFireAPICloud

method), 26
set_sleep_timer() (intellifire4py.IntelliFireAPILocal

method), 21
set_thermostat_c() (intelli-

fire4py.IntelliFireAPICloud method), 27
set_thermostat_c() (intelli-

fire4py.IntelliFireAPILocal method), 21
set_thermostat_f() (intelli-

fire4py.IntelliFireAPICloud method), 27
set_thermostat_f() (intelli-

fire4py.IntelliFireAPILocal method), 21
SOFT_LOCK_OUT (intellifire4py.IntelliFireErrorCode at-

tribute), 28
soft_reset() (intellifire4py.IntelliFireAPICloud

method), 27
soft_reset() (intellifire4py.IntelliFireAPILocal

method), 22
start_background_polling() (intelli-

fire4py.IntelliFireAPICloud method), 27
start_background_polling() (intelli-

fire4py.IntelliFireAPILocal method), 22
stop_background_polling() (intelli-

fire4py.IntelliFireAPICloud method), 27
stop_background_polling() (intelli-

fire4py.IntelliFireAPILocal method), 22

stop_sleep_timer() (intelli-
fire4py.IntelliFireAPICloud method), 27

stop_sleep_timer() (intelli-
fire4py.IntelliFireAPILocal method), 22

T
turn_off_thermostat() (intelli-

fire4py.IntelliFireAPICloud method), 27
turn_off_thermostat() (intelli-

fire4py.IntelliFireAPILocal method), 22
turn_on_thermostat() (intelli-

fire4py.IntelliFireAPICloud method), 28
turn_on_thermostat() (intelli-

fire4py.IntelliFireAPILocal method), 22

38 Index

	Features
	Requirements
	Installation
	Usage
	Contributing
	License
	Issues
	Credits
	Usage
	Control Config Values
	UDP Discovery
	Local Polling
	Cloud Credentials
	Local Control

	Reference
	IntelliFire4PY
	IntelliFireAPILocal
	IntelliFireAPICloud
	IntelliFireErrorCode

	Contributor Guide
	How to report a bug
	How to request a feature
	How to set up your development environment
	How to test the project
	How to submit changes

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	License

	Python Module Index
	Index

